
One Click Archiving - A Simple System for Bridging the Content and Records Management
System Gap

Jan ASKHOJ, Mitsuharu NAGAMORI, Shigeo SUGIMOTO

School of Library and Information Science, University of Tsukuba
Graduate School of Library, Information and Media Studies, University of Tsukuba
 E-mail: s0621343@ipe.tsukuba.ac.jp, {nagamori, sugimoto}@slis.tsukuba.ac.jp

Abstract
 Content Management Systems (CMS) are widely used for organizations to publish information, to keep transactions and records,
and so on. However, in general, CMS in use today do not offer the required level of functionality for an organization that needs to
ensure safe, legally compliant records management. It therefore becomes necessary to transfer the records to be retained to a
Records Management System (RMS). CMS and RMS are seldom interoperable out of the box, making archiving of retained records
difficult. Up to now, the solution to these problems has been to add records to the archive by hand, or to create custom programs for
records transfer. Neither of the above solutions is optimal. In this paper, I propose a lightweight approach to the problem of
integrating CMS and RMS software. My approach is based on a three layered model for the organization of an corporate records
management system. The model allows the connection of one or more CMS to a RMS by making it possible to automatically
transfer and ingest retained records for archival.

 Using the above model, I have developed ATLAS (Automated Transfer Lightweight Archive System). ATLAS is designed to
connect multiple CMS with different metadata schemes to a single RMS, enabling automatic archiving of records submitted by
users. Each CMS is registered in ATLAS, along with a metadata crosswalk that translates CMS metadata into a metadata format
that can be imported into the RMS. ATLAS also supports registration of additional CMS by allowing administrators to upload
metadata crosswalks in XML/OWL. ATLAS uses RSS 2.0 as a protocol for transferring records and metadata. Because it uses open
protocols and technologies, such as RSS and XML, ATLAS is designed to work with existing organizational CMS and RMS. With
this paper I hope to have shown that the cost of Records Submission in an organizational setting can be significantly reduced by
using the three layered model, exemplified by a system like ATLAS.

Keywords

Metadata Schema, Metadata Crosswalks, Records Management, Content Management, Data Transfer

ワンクリックアーカイビング - コンテンツ管理と記録管理のシステムを橋渡す

ヤン アシコイ、永森 光晴、杉本 重雄

筑波大学図書館情報専門学群、筑波大学図書館情報メディア研究科

E-mail: s0621343@ipe.tsukuba.ac.jp, {nagamori, sugimoto}@slis.tsukuba.ac.jp

概要
 企業や組織内では情報の作製や公表のためにコンテンツ管理システム（CMS）がよく使用されている。現在
では、米国のサーベンス・オクスリー法といった企業経営者の責任と義務・罰則を定めた法律に従って、組
織や企業が持つ情報を記録することが求められている。しかし、CMSとRMSの連携は考慮されておらず、現
在用いられている一般的なCMSの機能では、法律に従った記録管理のために、CMS上の情報を記録管理シス
テム（RMS）に安全に転送することは難しい。一般的には手動で情報をCMSからRMSに移動させる、または
独自の転送プログラムを作るという手間のかかる方法で解決されている。そこで本研究では、CMSと RMSを
結び付けるために三層モデルを提案する。このモデルでは、組織内のアーカイブの構造を三層に分けて表現
し、異なるCMSが持つ記録すべき情報を RSS や Atom を利用して RMS に記録する。本稿では、三層モデル
と、そのモデルに基づいて開発した ATLAS（ Automated Transfer Lightweight Archive System）につい
て述べる。

キーワード
メタデータスキーマ、メタデータCrosswalk、レコードマネジメント、コンテンツマネジメント、データ転
送

mailto:s0621343@ipe.tsukuba.ac.jp
mailto:s0621343@ipe.tsukuba.ac.jp

1. Introduction
In companies and organizations, there is a need to archive
business critical content, regardless of form or media, in a
secure consistent manner. There are many reasons for this,
such as safeguarding vital information, improving efficiency
and productivity by helping search and retrieval. Recently,
following the Sarbanes Oxley Act and other legal measures in
the US, having a proper records management program in use
is vital for ensuring regulatory compliance. To ensure this,
most larger companies/organizations need records
management systems with specialized functionality which can
support the records management process [1]. Marcel Robles
and Mark Langemos defines Records management as:

“The professional management of information in the physical
form of records from the time records are received or created
through their processing, distribution, and placement in a
storage and retrieval system until either eventual elimination
or identification for permanent archival retention.” [2]

While some systems exist that can manage content and records
throughout the entire content lifecycle, this is far from the
norm (I define a record as a piece of content that has reached
its final form, and that is deemed archive-worthy according to
the organizations retention schedule). Implementing a system
with functionality to handle different types of content
throughout all stages of its lifecycle is a costly endeavor.
Organizations that want to avoid this and still need specialized
records management functionality therefore need to transfer
records from where they are created and used to a RMS.
Because of the large amount of records in organizations today,
as well as the complexity of the many systems involved, the
process of getting records in to the RMS can be a problem [3].

To make matters worse, many organizations today use a
number of different tools to help with the content creation and
management process, depending on the task. Examples of this
are Document Management Systems, Web content
management Systems, Digital Asset Management Systems etc.
All of these systems are examples of Content Management
Systems (CMS).

While there is no canonical definition of what a CMS is, I use
the following definition for content management:

"Content management encompasses a set of processes and
technologies, enabling the creation and packaging of content
(documents, complex media, applets, components, etc.) as
part of a dynamic and integrated Web-centric environment."
[4]

In this paper, a CMS is a system that supports the creation and
management of a wide range of content types as described
above. If this definition is compared to the definition of
Records Management, it becomes clear that the focus for these
two concept is on different stages of the content lifecycle, as
illustrated in figure 1.

Figure 1: CM and RM in the content lifecycle

Common for CMS is that they store content that needs to be
retained in a secure manner, according to archiving policy.
This means a situation where organizations are left with
important records in a number of different systems, that are
not designed with archiving in mind, and that have insufficient

functionality to guarantee the safe, long term preservation of
records.

Therefore, a simple model that integrates both content creation
from multiple sources, as well as archiving functionality is
highly desirable. The benefits of such a system would be:

• Organizations would be able to use whatever CMS
systems needed, without worrying about records
management. This would be less costly than buying or
building specialized systems containing both CMS and
RMS functionality for all the content types in use.

• Users would not have to spend their time manually
moving their records from CMS to RMS.

• Organizations would not have to buy or develop custom
solutions for moving content from CMS to RMS.

In other words, there is a real need for a lightweight model for
the transfer content from CMS to RMS. Lightweight in this
context means easy to implement, manage and change.

To achieve this goal of simplicity, it is important to keep the
number of functional entities in the model as low as possible.

I seek to achieve this goal of integrating CMS and RMS by
proposing a new model for integration. Having proposed this
model, I plan to use it as the basis for building a system that
allows the automated transfer of content from one or more
CMS to a RMS.

2. Background
2.1 Problems with existing methods of
records transfer
There already exist a number of models for transferring
electronic records to a repository or archive. Models such as
the OAIS [5] are generally applicable, very detailed, and offer
a high degree of functionality. However, these kinds of system
are aimed at archival institutions or large digital archive
systems, where the scope is much broader than in a typical
private organization. In smaller organizations, using a
lightweight approach to the problem would be preferable to
adopting such a comprehensive model. Therefore the solution
has often been to transfer records deemed archive-worthy by
hand, or to use custom systems for records transfer that are
designed to match the software and hardware profile of the
organization.

Both of these methods are problematic. Transferring records
from one system to another by hand is both time consuming
and error-prone. A typical workflow might look like this:

• A user or a group of users is working on a content item in
a CMS. Once the content is finished, the user saves it in
the CMS and marks it “final version”. Since the content
has to be archived according to the organizational
retention schedule, the user saves a copy of the content to
a local folder on his PC or on the network. The user then
logs in to the organizations RMS and navigates to the
“upload content” screen. Here the user fills in the required
metadata fields by hand and uploads the content to the
RMS.

And of course, the larger the amount of records and metadata,
the more costly the process becomes for the organization.

Building specialized programs for transferring records, such as
ad-hoc export-import scripts also has drawbacks: Since the
programs have to be custom-built to fit the systems already in
use in the organization, in-depth knowledge about these
system is required. Furthermore, custom built programs or
specialized adaptations of existing programs can be expensive
to develop. And finally, in case of a system migration or
changes to the application programming interfaces (API) used

on either the content creation side or records management
side, the programs might have to be rewritten. This may also
be necessary if there are changes to the organizational
metadata schema, or if a new CMS is added to the program.

Getting digital content from multiple sources into a common
repository is in some ways similar to existing Web Archiving
projects, where the object is the ingest of content in order to
ensure long-time preservation (for example The Internet
Archive) [7]. One of the benefits of this approach is that it
eliminates the cost of manually submitting content and filling
in metadata, by reading and importing selected content
automatically. On the other hand, a problem with crawler-
based web archiving is that dynamically generated content
(such as personalized pages) and unless metadata is
immediately available in the code read by the crawler, it may
not be captured.

In corporate records management, it is also desirable to
eliminate the submission process. After all, the time spent
submitting content manually costs money. But unlike web
archives, it is absolutely essential that all published
information to be archived is captured completely and in a
format true to the original. Luckily, in a private company or
organization, content to be archived is captured from known
sources. In other words, the CMS used as source for the
ingest, while they may be different, are all within the control
of the organization in question. This makes it possible to make
a model that where all the entities (CMS, RMS and the
connecting data transfer) can be adapted to fit the
organizations needs. However, from the standpoint of an
organization, it is desirable to make as few adaptations as
possible, since all changes to existing systems means extra
cost.

Another problem of conventional records transfer methods is
metadata. Because of the differences between Content and
Records Management, the metadata schemas used are is likely
to differ as well. This problem only gets worse when
transferring content from multiple sources, in which case you
have to deal with several different metadata schemas. The
need to design a model of interaction between the CMS and
RMS comes from the fact that there are differences between
the two types of system, and as a consequence, they may not
be able to exchange data out of the box. In a CMS, managed
content can be made up by any combination of elements from
a number of sources, formatted according to display
preferences.

These facts cause a number of problems when wanting to add
the content to a generic RMS.

• First of all, not all content in a CMS should be archived,
so a records declaration process needs to take place.

• The content may not be in a format that can be added
directly to the RMS. In order to ensure long time
preservation, some organizations may wish to convert
content into different file formats in order to ensure long-
term usability, e.g. from Microsoft Word to PDF.

• Because of the inherent differences between content
management and records management, metadata
selection and conversion from one schema to another will
most likely be necessary. Where schema conversion is
concerned, three scenarios can be imagined. (1) The
necessary metadata in the CMS fits the RMS metadata.
(2) The necessary metadata exists in the CMS, but
doesn't fit the RMS metadata schema. (3) The metadata
needed by the RMS doesn't exist in the CMS. Of these
three scenarios, 2 and 3 will need to be addressed for
successful metadata transfer to take place. If more than
one CMS is used in the model, the conversion between
schemas becomes N → 1, as for example a CMS for

Digital Rights Management may have a totally different
set of metadata compared to a CMS for Web Publishing.
(It is possible to imagine an organization with several
different RMS (N → 1), but this scenario is very rare, and
is considered outside the scope of this paper.

• While it is true that most current CMS and Records
Management Systems support web protocols such as
HTTP and FTP, they are not designed to exchange data in
a way that allows easy transfer and ingest of records.

2.2 Metadata crosswalks and data loss
Ideally, a transport package would be able to transfer CMS
metadata to the RMS in its original format. But as explained in
chapter , the metadata schema in use in an organizational CMS
and RMS are likely to be different. In this case, some kind of
metadata crosswalk becomes necessary to change the CMS
metadata so that it matches the RMS metadata schema. There
are a number of existing crosswalks available, such as FGDC
to USMARC and ADL to FGDC [8]. In order to handle
differences in metadata schemes, it may be necessary to add
metadata crosswalking to the a system built on the three
layered model.

However, when crosswalking/translating from one schema to
another, the result is almost inevitably loss of data. In
“Crosswalks The Path to Universal Access?”, Mary S.
Woodley lists six common misalignments between schemas
that serve as a cause of data loss: [9]

1. A concept in the original database does not have a
perfect equivalent in the target database

2. Data that exists in one field in the original schema may
exist in separate fields in the target database.

3. Data in separate fields in the original schema may be in
a single field in the target schema.

4. Information in one schema may reside in a field that is
indexed, whereas it is only free-text descriptive
information in the other schema.

5. There is no field in the target schema with an equivalent
meaning, and unrelated information may be forced into
the same "bucket."

6. In only a few cases does the mapping work equally well
in both directions. (See number 2 above.)

To increase the usability of a crosswalk, it is desirable to keep
the data loss to a minimum. In the case of ATLAS, some steps
have been added to avoid data loss, but more could no doubt
be implemented given additional time. In order to give an idea
of the effectiveness of the metadata crosswalk functionality in
ATLAS, I have applied Woodleys six common schema
misalignments.

1. No perfect equivalent in the target database.
This problem also exists in ATLAS, but is not related to
its functionality. It is exclusively a mapping problem.

2. Data in one field may exist in separate fields in the
target.
Functionality to deal with this problem has been built into
ATLAS. For example, the CMS element type can be split
into Type and the qualifier Record Type

3. Data in separate fields may be in a single field in the
target schema.
Functionality to deal with this problem does not yet exist
in ATLAS.

4. Information in one schema may be in an indexed field,
but in a free-text field in the target schema.
This problem depends more on the indexing policies of
the used CMS and RMS than on functionality in ATLAS.
That said, it can still be a problem.

5. There is no field in the target schema with an equivalent
meaning, and unrelated information may be forced into
the same "bucket."
This is also a mapping problem.

6. In only a few cases does the mapping work equally well
in both directions.
This problem lies outside the scope of ATLAS, as it is
only designed for one directional mapping (CMS →
RMS)

As can be seen from the above points, a lot of the crosswalk
problems are due to field mapping, but some are more a
question of functionality, such as field splits and merges.
Either way, in order to ensure that no metadata is lost in the
translation, ATLAS sends a copy of the original CMS
metadata to the RMS, where this can be saved as a seperate
item in the record. This should help subsequent data retrieval
by at least making it possible to search the old metadata as
full-text.
Finally, to add to the schema problems outlined by Woodley,
there is the problem of element values. Some RMS may have
specific requirements for the format of the data values
received from ATLAS. Whereas there is no support for such
functionality in ATLAS at the moment, various proprietary
and open-source data format converters exist, for example
WCSTools Getdate. [10]

2.3 Requirements for a records transfer
model
Analyzing the previously presented problems with existing
methods of records transfer, a number of requirements for a
new transfer model can be specified.

• The model must support the automated transfer of records.
As mentioned previously, a manual records submission
process requires the user to perform a long series of steps
in order to transfer a record to the RMS. Ideally, the
records transfer process would be totally invisible to users
and archivists. As soon as content is finalized, it should be
transferred to the RMS for proper storage.

• The model must be lightweight. Records management is a
business process, not the sole purpose of the business (as
compared to web archives and traditional historical
archives), this means that the model must only contain the
required functionality for successful records transfer, and
make as few demands on the organization as possible.

• The model must be flexible enough to work with a wide
range of systems. There are a large number of CMS and
RMS on the market, with varying degrees of functionality.
The model must be designed to work with as many of
these as possible. Furthermore, some organizations may
use more than one CMS. It must be possible to transfer
records from multiple CMS.

• Finally, the model must support the transfer of metadata.
Since CMS also use metadata to support the content
management process, it must be possible to reuse this
metadata where applicable.

3. Model for Connecting CMS and RMS
3.1 Introduction to the three layered model
Based on the requirements in chapter 2, I have developed a
new model for integrating CMS and RMS functionality to
create a complete archiving solution. My model differs from
existing models in that it works with almost any type of off-
the-shelf system with only a few modifications, while still
being lightweight. It also solves the problems of content
transfer and metadata conversion, and offers corporate

archives an automated approach to creating and managing
content in native systems, while allowing them to remain
compliant with records management regulations.

3.2 The Three Layered Model explained
Figure 1 gives an overview of the three layered model. The
left side represents the CMS and the right the RMS.

The first layer is the content layer. Content is produced or
imported into the CMS, where it will most likely undergo a
number of revisions. When the revised content is eventually
published in one form or another, it will be transferred to the
RMS.

The second layer represents the metadata about the content.
Metadata will almost certainly be different in the CMS and
RMS. Generally speaking, in a basic CMS, the focus is on
managing and producing content. The CMS support this
process by offering functionality such as versioning, keywords
etc. All of these functions can be described as different types
of metadata, such as descriptive metadata, administrative
metadata and structural metadata. This metadata is all related
to the content which it describes and is particular to the type
of CMS in question. In an RMS, the focus is on long time
storage of static records, and the metadata in use in such a
system is tailored to these needs, so metadata is used that
supports functionality such as retention and disposal
management, record series management etc. [11]

The third layer is the meta-metadata Layer which contains the
data necessary for communication between the CMS and the
RMS. This layer has several functions.

• The first function is to ensure that all relevant data is
made available for transfer.

• The content and metadata is transferred using suitable
formats which can be read by the RMS.

• Finally, the third layer ensures safe transfer of data from
one system to another

Figure 2: The three layered model

The arrows in the model represent the flow of information.
This will be described in further detail in chapter 4, but in
short: Content and metadata from CMS layer 1 and 2 is sent
by CMS layer 3 to RMS layer 3. After import into the RMS, it
resides in RMS layers 1 and 2. In other words, the CMS layer
1 content becomes RMS layer 1 records and the CMS layer 2
metadata becomes RMS layer 2 metadata. This connection is
shown by the horizontal dotted lines in layer 1 and 2.

I have designed the thee layered model to be as simple as
possible, while still ensuring that all archive-worthy content
and metadata is transferred safely to the RMS. By simple I
mean:

• It has only a few entities.

• It works with off-the-shelf/existing tools.

• It uses simple protocols.

• It is suited to a specific situation, i.e. building an
archiving system by integrating CMS and RMS.

These factors form the basis of my approach, and will help
facilitate the implementation of a system designed using the
three layered model in an organizational setting.

4. Information flow in the three layered
model
Unlike traditional archives and public electronic repositories,
the main purpose of corporate records management is to
support business processes and policy, enabling organizations
to handle their own records effectively and in accordance with
law. This lends some unique properties. Among these are:
Shorter retention periods, the use of original document
formats rather than conversion, automated workflows, and
finally a high degree of integration between systems,
procedures and tools [12]. This integration is made possible
by the aforementioned handling of the entire records lifecycle
within a single organization.

Any model to be used in an corporate setting must take these
properties into account, as they have an impact on the records
management process. To illustrate how the model would work
in practice, I have prepared an example of information flow.

The data flow in the model (figure 1) is from left to right. In
theory, the information in one layer corresponds to the
information in the same layer on the opposite side of the
model (e.g. CMS content to RMS content). However in
reality, the data flows from CMS level 1 and 2 down to level
3, is transported to RMS level 3 and passed up to level 2 and
1. During this process, there may be changes to the data, such
as conversion or selection, but it is still the same data entity
(e.g. content is still content).

4.1 Content Management System
The left part of the model represents the CMS, split in three
layers. The model can operate with input from multiple
sources, so the left side can be thought of as several CMSs, all
represented using the three layer model.

CMS Layer 1 - Content
In the CMS, a new post is created as either as new content or
as content reusing one or more existing elements. The
document is revised and updated, using content management
functionality in the system. At some point, a version of the
content considered final will be published or used for some
business purpose. If the content type is marked as a retained
record in the organizational retention schedule, the content
needs to be archived.

CMS Layer 2 – Metadata
At the time of creation, some metadata will be created
automatically (publishing status, creator name, time of
creation etc), and some metadata may be added manually
(keywords, subject etc). CMS functions such as versioning,
check in/out, also add information to the content, and as such
generate metadata.

All of this metadata is managed according to the metadata
schema used in the CMS. Some of this metadata may be
relevant when archiving the content, while some may not.

Apart from the metadata used by the CMS to manage content,
most content types themselves also contain metadata of some
sort. For example, Microsoft Word documents have built in
property fields for keywords and comments. This metadata
will be transferred along with the originating file, and not be
converted or otherwise managed by an ATLAS system. The

reason for this is that because of the relative short retention
schedules in use in corporate RMS, documents or spreadsheets
are mostly stored in their original format. This extends to any
document-native metadata.

CMS Layer 3 - Transport
Level three is responsible for selecting the content and
metadata, and transporting it to the RMS for ingestion. In the
case of content, selection happens according to parameters
from the company retention schedule. For example, all content
tagged “contract” must be archived, and will be passed to
layer 3. In the case of metadata, all available metadata from
the originating CMS post is included in the transport package,
and will be read and converted by the RMS Level 3 Reader
and interpreter.

A transport package contains three elements: Content,
Metadata, Transport Metadata. The elements of the package
are made up of:

• Content: Content is actually an electronic copy of the
post in the CMS. In the system, all the data that makes up
the competent package will be stored in one or more
databases. Content can be stored as plain text, HTML and
mime-type file attachments such as Word or PDF.

• Metadata: Metadata is similarly stored as fields in a
database, and the format and values it takes will depend
on the metadata schema used for the CMS.

• Transport package: On the CMS side, The transport
package collects and packages the data to be sent to the
RMS, namely the Content, Metadata and transport
metadata. Transport metadata is generated by layer 3 to
ensure safe and successful data transfer, and to help with
metadata conversion. When a package is made available,
it includes a metadata-schema ID for the metadata it
contains.

4.2 Records Management System
The right part of the model represents the RMS part of the
system, also split in three layers.
RMS Layer 3 – Transport
On the RMS side as well, the transport layer has several
functions:

• It regularly receives transport packages from the CMS
and saves them to a temporary location.

• Using the Metadata Authority URI, the Reader and
interpreter can acquire a conversion table for the
metadata schema used in the received Transport Package.
Metadata that is not needed by the RMS is ignored.
Metadata fields that are needed by the RMS but not
provided by the CMS are left empty.

• The transport layer is also responsible for logging the
receipt of a transport package, and sending an
acknowledgment back to the CMS to show the package
has been received.

Layer three has an additional important function: To decide if
content should be archived or not. Most corporate archives use
Retention Schedules (also known as File Plans) to determine
what content should be archived. These schedules are divided
by record type, and contain detailed instructions for archiving.
In the model, archiving is also decided by record type. In other
words, all finalized content of a certain type must be archived.
When a CMS metadata schema is registered in the Metadata
Authority, whatever field in it that defines the Content Type
will also be registered, and mapped to the corresponding
Archive Metadata field for Record Type. If the value in the
Record Type field matches a Record Type to be archived
according to the Retention Schedule, the Content will be

archived. If the Content type is not mentioned in the Retention
Schedule, the content in question, along with its metadata will
not be added to the RMS.

RMS Layer 2 - Metadata
Before the converted metadata from the transport package is
added to the RMS together with the corresponding content, it
needs to be reviewed by an archivist. This is to ensure that no
incorrect metadata is added to the RMS, but also to manually
fill in any fields with no metadata (where there is no
corresponding metadata in the CMS). Depending on what
metadata schema is in use in the RMS, the transport package
itself may also hold information that can be used as metadata
in the RMS, an example of this is the date-time the transfer
package was added to the RMS.

The metadata will be imported using the import tools built
into the Archiving software.

RMS Layer 1 - Content
The content and metadata from the data package will be
ingested after the archivist review. In the model, content will
be added in the same format as it was in when it existed in the
CMS. The content will be ingested using the import tools built
into the archiving software.

5. Related models
Setting aside the number of ad-hoc solutions in existence,
there are already a number models that deal with records
transfer and ingest. A well known example of such a system is
the OAIS (Open Archival Information System). OAIS has
achieved its popularity based on a number of factors. It is an
ISO standard, it is completely open, it is well documented, and
it has been in effect since 2002 with parts of it being
implemented in the real world [13].

The OAIS model may be applicable to any archive, and
contains recommendations for a number of archival
information preservation functions including ingest, archival
storage, data management, access, and dissemination.

There are a number of differences between the OAIS and the
model I am proposing. First of all, OAIS and ATLAS differ in
their approach. The object of OAIS is to describe an entire
archive system, whereas ATLAS deals with integrating generic
CMS and RMS, to make an archiving system without defining
these entities in detail.

One of key points of the OAIS model is that it is focused on
long time preservation. This is handled by the Preservation
Planning entity, which functions include evaluating the
contents of the archive and periodically recommending
updates to the archival information and guaranteeing data
accessibility even if the original computing environment
becomes obsolete. Another characteristic of OAIS is the large
number of functional entities and subsequent high number of
functions provided. An example of this is the Ingest entity,
which has five sub-functions, each responsible for carrying
out a number of actions. This makes OAIS a very complex
model its entirety. In an corporate setting, where records
management is just one of many business functions that need
to be carried out, only a subset of the OAIS would be needed
to build a workable archiving system. Also, the high level of
functionality in the different OAIS Entities and the interaction
between these, make the OAIS unsuited for implementation
with the simple systems and procedures in use in
organizations not specializing in archiving. [14]

Figure 2: The OAIS model and its main entities

In such a setting, where the focus is on integrating off-the-
shelf systems, the ATLAS model has an advantage in the fact
that it makes little demand on the CMS and RMS and their
functionality. It can also be kept comparatively simple by not
using Information Packages that explicitly define Preservation
Description Information. Finally, unlike OAIS, records do not
necessarily need to be independently understandable
(understandable without the assistance of the content
producers). It is not uncommon for records in a RMS to be of
no use to anyone but the producers, but they may still need to
be archived because of legal, contractual or other obligations.

Another model that shares similarities to the three layered
model is the The Open Archives Initiative Protocol for
Metadata Harvesting (OAI-PMH). This protocol is also built
on existing tools, such as HTTP and XML, and harvests
metadata of any format specified by a community, based on
unqualified Dublin Core [15][16].

OAI-PMH is useful as a protocol, and could with some
modifications be used in a system built on the ATLAS model,
but as it is designed for metadata harvesting, it cannot transfer
content. Furthermore, as a harvesting protocol, it does not in
itself contain functionality for reporting back to the data
provider whether the data transfer has completed successfully.
Finally, as OAI-PMH stands today, specialized metadata
schemas is supported, but the protocol requires that servers do
use unqualified Dublin Core metadata in XML as a basis.
ATLAS makes no such requirement.

6. Building the ATLAS system
Based on the three layered model, I have developed ATLAS.
Before moving on to a detailed description of the
implementation, this chapter will present an overview of the
main elements and how the system works.

Figure 3 shows an overview of the ATLAS system. The three
main elements of the ATLAS system are:

1. One or more CMS with support for RSS and the RSS
extensions described under “Technical Overview”. The
CMS could in principle be of any type, as long as the
content can be embedded in an RSS feed. Since the object
of ATLAS is to store business critical records, all
embedded content must be transferred to the RMS to
guarantee the completeness of the record. This means that
at the time of publishing, the CMS must simultaneously
publish (make available for the export module) all the
content that is needed to make a complete record
(intellectual unit).

2. In the ATLAS system built for this thesis, the CMS is
based on Drupal, and has been expanded in order to use
extra metadata fields. The CMS supports RSS 2.0, and any

content published will be made available for harvesting in
a RSS feed, along with the CMS metadata. The CMS also
supports attachments, which are represented as URLs in
the feed.

3. An RMS with import functionality supporting metadata
in XML. As mentioned previously, metadata coming from
the Metadata Authority is formatted as XML, and the
RMS needs to be able to read this during the import
process.

4. I have used a Dspace digital repository to represent the
RMS for this thesis. I have made no changes to the default
Dspace installation, other than creating a new collection
for storing records and adding metadata elements from the
UK-GOV Metadata Standard.

5. The ATLAS Add-ons, consisting of a customized Feed
Reader, Metadata Authority, metadata crosswalks and a
registration/metadata crosswalk import function.

6. These components are tied together via a Ruby on Rails
web-application that stores CMS and Metadata crosswalks
in a web-accessible SQL database.

The ATLAS Add-ons are used to connect the CMS and RMS
by reading the CMS feed, using metadata crosswalks to
translate the metadata and then passing the converted metadata
to the RSS for import. In detail, what happens is the
following:

1. The Feed Reader reads the feeds from the CMS. In case
of a CMS with a badly formatted feed (such as with the
customized Drupal system), ATLAS will strip formatting
and other unneeded information from the feed.

2. The Metadata Authority splits the feed into individual
content items. It then determines whether the content item
has already been converted on a previous occasion. If this
is the case, it proceeds to the next item.

3. The Metadata Authority extracts metadata from each
content, and using the registered crosswalks, the extracted
CMS metadata elements fields are converted into the
corresponding RMS element fields. For example, the CMS
value “date” is translated into “Date.Created”.

4. The translated RMS metadata fields are formatted for
import into the RMS and stored in the temporary
Download Folder.

5. If necessary, an approval process can take place.

6. The records and metadata is imported automatically into
the RMS at fixed time intervals.

Figure 3. The ATLAS workflow

Finally, ATLAS also supports adding new CMS and
crosswalks. This is done in the CMS & Crosswalk registration
module, described in detail in chapter 6.2.

6.1 Transport package protocol
In order to transfer records and their metadata from CMS to
RMS, a protocol for data exchange is needed. In order to
function with ATLAS, there are a number of requirements.
First of all, the protocol must allow the safe transfer of both
records and metadata. It must be expandable in such a way as
to be made to work with multiple metadata schemas. It must
be generic enough to be expected to work with a large number
of different CMS and RMS. And finally, it must be easy to
implement.

The protocol used to transfer content from the CMS to the
RMS is RSS 2.0 (Really Simple Syndication) and ATOM.
Both protocols are XML based lightweight formats used to
publish frequently updated digital content on the internet. It
works by an information publisher providing a content
”feed” (a machine readable list of published content) on a web
site. This feed contains both an amount of content (sometimes
only a preview, such as the first 10 lines of an article) and
basic metadata. The feed can be downloaded at set intervals by
a feed reader/aggregator and read online or off-line without
the user having to visit the originating site. There are a number
of different, more or less compatible versions of RSS in
ATOM in use on the net today. I have chosen RSS 2.0 and
ATOM because they are both widely supported and can be
extended via namespaces [17].

To explain how protocaols work in ATLAS, I will be using
RSS 2.0 as an example in the following chapters.

In order to use RSS for sending transport packages from CMS
to RMS, it is necessary to add a few enhancements. The first
of these enhancements is the support for adding content. In
RSS 2.0 feeds, content is written in the <description> field in
RSS Item, which can be filled with plain text giving an item
synopsis. However, in a CMS, the content to be archived is
not limited to text. It may be html, a PDF document, or some
other kind of rich content. In such cases, the content can be
linked to via an <enclosure> field, also included in RSS Item
(this is how RSS is used in Podcasts). The need to enhance
RSS content handling arises in those cases, where a single
item in a CMS contains several independent binary files. In
such cases it may be necessary to add additional <enclosure>
fields.

The second necessary enhancement is metadata. As RSS 2.0
only contains a default set of metadata elements, it is
necessary to add extra fields to contain the metadata elements
used in the CMS. In ATLAS, these extra elements are included
in RSS Item.

Finally, it is very important that the <link> field in RSS
Channel is used correctly, as this identifies the originating
CMS during metadata conversion [18].

The use of RSS in ATLAS
RSS as it is implemented in ATLAS, is not very different from
default RSS 2.0. The only place that needs to be extended is
the Item element, where custom metadata elements will be
added. This results in a structure like this:

• RSS Header - No change compared to default RSS 2.0

• Channel - No change compared to default RSS 2.0

• Item – Contains default RSS 2.0 elements plus custom
metadata elements. An example of a custom element
would look like this:

• <date_issued>01-07-2007</date_issued>

Other enhancements
As said previously, RSS and ATOM are very flexible
protocols, and various enhancements to it are already in use on
the web. Three very useful technologies are Ping, Trackback
and Authorization/Security. Because of time constraints, these
three technologies have not been implemented in ATLAS, but
considering that they are all supported by RSS and ATOM, it
would be beneficial to add them to a working ATLAS system.
A detailed explanation of the three technologies can be seen
below.

• Adding “Ping” support for immediate content aggregation.
Ping is a RSS service designed to send a notification to
predetermined server(s), to let them know that the
originating site has been updated with new content [19].

• Adding “TrackBack” support in order to verify whether
the records transfer has completed successfully. TrackBack
is a RSS service for peer-to-peer communication and
notifications between two web sites.

• Adding security measures in order to ensure that the
transfer of content and metadata between CMS and RMS
takes place in a secure manner

1. Authentication: HTTP Authentication is a basic
authentication schema in which a user or application
is required to input his credentials in the form of a
user name and a password in order to gain access to
a site. In HTTP Authentication, the user credentials
are sent over the net in plain text, which makes
interception by a third party possible. But if used
together with HTTPS/SSL, the transmission
becomes encrypted and thus secure.

2. Confidentiality: HTTPS/SSL is used to ensure data
confidentiality by encrypting the data stream
between two communicating applications, and to
authenticate the server, and client (optional). It can
be used with the RSS protocol.

3. Transfer verification: Using the TrackBack Ping
functionality described previously, it becomes
possible to verify that the Transport Package has
been sent and received successfully. It should be
noted that this does not guarantee that the content
has not been altered or become garbled during
transfer. The TrackBack Ping functionality does not
guarantees the integrity of the contents of the
Transport Package. For this, checksum or a similar
kind of data verification would have to be added.

Support for other protocols
Whereas ATLAS is currently configured to work with RSS
2.0 and ATOM, it would be easy to add support for other
protocols, as long as they meet the requirements mentioned
under “Protocols” in section 6.1. An example of such a
protocol would be a similar XML-based format for
syndicating content and metadata. For such a protocol to be
used with ATLAS, there are a few requirements: As with RSS
2.0 and ATOM, additional metadata fields must be supported.
Whereas for example RSS uses a RSS/Channel/XML
structure, the structure of a customized XML based protocol
may be different. To use another protocol, this difference of
structure would have to be defined in the CMS registration
part of ATLAS [20].

6.2 Metadata schemas in ATLAS
It is difficult to generalize about what metadata needs to be
exchanged between a CMS and a RMS. This depends on a
wide number of factors such as system type, organization
type,

organizational policy etc. What can be expected, however, is
that the CMS and RMS will be using different metadata
schemas. As an example to illustrate this, I have chosen two
general metadata schemas: The “CMS metadata elements and
guidelines” from Monash University to represent a CMS
metadata schema, and “Requirements for Electronic Records
Management Systems 2: Metadata Standard“ from the UK
National Archives. Table 1 shows an overview of the two
metadata schemas [21][22].

Since the metadata schemas used here serve no other purpose,
than to act as examples and to be used as schema
representations when building a prototype of the ATLAS
system, I have chosen to use only “Required/Required where
applicable” fields and not include “Optional” fields. As it can
be seen, some fields of the CMS metadata elements and
guidelines are identical to Requirements for Electronic
Records Management Systems (for example: Title). In those
cases, no conversion is necessary. However, in some cases
there may be differences in the data formats used between the
two systems, such as the formats used to express Date or
Identifier. In these cases, the values will have to be converted,
using a crosswalk. Up to now, I have mainly been dealing
with metadata relating to individual content. However, where
this content belongs in the RMS classification schema (also
referred to as fileplan) is also important. For example, the UK
National Archives Requirements for Electronic Records
Management Systems specifies 3 levels of metadata: Class,
Folder, Record. Many CMS also support some form of
Hierarchical structure, and there is nothing that prevents
structural metadata to be converted and used, providing this
metadata is explicitly expressed at the content level. Metadata
that is inexplicitly inherited from a higher level can not be
transferred, as it is not present at the content level.

Adding new metadata crosswalks
Once ATLAS has been set up and the metadata schemas to be
used for the crosswalks have been decided, it is necessary to
add these schemas to ATLAS. When development on ATLAS
began, metadata schemas were simply hardcoded into the
system, making changes to a particular schema difficult. The
next step was to support the manual adding and editing of
metadata fields, which made schema management easier.

However, in an organization with many different schemas in
use, manual metadata maintenance in ATLAS becomes
undesirable. This is partly because the tools in ATLAS for
adding and changing fields are too simple, but also because
schema reuse is difficult. There are two situations in particular
where metadata crosswalk import functionality is needed. One
of these is when ATLAS has first been setup, and the metadata
crosswalks in use in the organization needs to be added. The
other is whenever a new CMS needs to be added to ATLAS.

Creating metadata crosswalks
It becomes clear that there is a need for a simple way in which
an archivist can handle crosswalks in ATLAS. Based on the
problems described above, an ideal import function would
enable schemas to be reusable internally in the organization,
make them easy to import, editable using existing tools and
finally, be human readable to ensure ease of data
manipulation.

To that end, the import process in ATLAS has been based on
the four technologies: XML, OWL, XSLT and JSON. XML
has the advantages of being easy to work with and reusable
throughout the organization, and OWL gives the added benefit
of adding semantic functionality, such as the term validation
via namespaces.

What is XML/OWL
Before looking at XML/OWL, it may be a good idea to start
by explaining RDF. OWL and RDF are in many ways similar,

and OWL uses both the URIs for naming and the description
framework for the Web that is provided by RDF.

RDF is short for Resource Description Framework, and is a
language for representing information about resources in the
World Wide Web. It is particularly used to represent
metadata about Web resources, such as the page title, date etc.
RDF is a machine-understandable language, which means that
it is used for situations in where information needs to be
processed by applications instead of only being displayed to
humans. Just like XML is a common data exchange format,
RDF gives a common framework for expressing information
so it can be exchanged between applications. And just like
XML it can be be used with a number of processing tools and
parsers.

In this format, the metadata can be parsed and used for
metadata schemes in ATLAS. However, as mentioned earlier,
the format used in ATLAS isn't XML/RDF but XML/OWL.
OWL stands for Web Ontology Language, is a a language for
defining and instantiating Web ontologies. Ontology refers to
the science of describing the kinds of entities in the world and
how they are related. An OWL ontology may include
descriptions of classes, properties and their instances.

OWL is a vocabulary extension of RDF, but OWL is a
stronger language with greater machine interpretability than
RDF. OWL also comes with a larger vocabulary and stronger
syntax than RDF, making it well suited for use with ATLAS
[25].

Creating XML/OWL crosswalks for ATLAS
The first step in creating the XML/OWL crosswalk, was to
create a topic map of the crosswalk of CMS entities.

Using The Protégé Ontology Editor and Knowledge
Acquisition System, the concepts and relationships between
the individual metadata terms of the Drupal CMS were
mapped to the RMS metadata terms using a graphical
representation of the data (The resulting graphics file is too
detailed to be shown in this paper, but can be obtained by
contacting the author)

The graphical OWL visualization was then parsed and
translated into the XML/OWL.

<rdf:li>

 <atlas:CmsElement rdf:about="http://www.nantoka.dk/#type">

 <atlas:element_path>type</atlas:element_path>

 <atlas:rms_element>Type.RecordType</atlas:rms_element>

 <dc:relation
rdf:resource="http://purl.org/dc/elements/1.1/#type"/>

 </atlas:CmsElement>

</rdf:li>

Figure 4: A single metadata element in the Drupal CMS
XML/OWL

Importing crosswalks with XSLT and JSON
Once a crosswalk has been created in XML/OWL, the next
step is importing it into ATLAS. Since the crosswalk is XML
based, it is possible to use tools such as xpath1 combined with
a prepared script to extract the elements and values for import.
However, there it is possible that the metadata schemas from

1 Xpath is a tool that can be used to search and extract data
from XML documents. It also provides basic facilities for
manipulation of strings, numbers and booleans. XPath uses
a compact, non-XML syntax to facilitate use of XPath
within URIs and XML attribute values. [26]

different CMS to be imported will differ in length and
structure. In such a case, the xpath script would have to be
adapted to fit the new schema. Alternatively, the xpath script
would have to be flexible enough to deal with different types
of schema, adding greatly to the complexity. I have taken
another approach, using the tools XSLT and JSON.

XSLT is a language for formatting XML documents through
templates. In ATLAS, XSLT is used to transform an
XML/OWL document into a JSON compatible format. To
quote the JSON specification:

“ JSON (JavaScript Object Notation) is a lightweight data-
interchange format. It is easy for humans to read and write. It
is easy for machines to parse and generate. It is based on a
subset of the JavaScript Programming Language, Standard
ECMA-262 3rd Edition - December 1999”. [27]

In other words, JSON is a lightweight format, far simpler than
XML/OWL. JSON is also well supported by Ruby on Rails,
on which ATLAS is built. This means that importing a string
of CMS elements formatted in JSON is relatively simple, and
can be performed with different crosswalks, even if the
XML/OWL files are slightly different.

6.3 ATLAS Requirements
At its current stage, ATLAS has a some requirements that need
to be taken into account when implementing it.

The first of these has to do with the way metadata is handled.
If the metadata provided by the CMS is very limited, or if it is
very different from the one in use in the RMS, the archivist
will have to fill out the missing data. This can be a very
resource intensive task, if the number of transferred records is
large. Furthermore, unlike the creator of the content, the
archivist may not know enough about the content to add the
correct metadata. One way to solve this problem is to extend
the metadata schema used in the CMSs to contain the metadata
fields used in the RMS.

The second point is that content is transferred to the archive
“as is”. While retention periods tend to be short in corporate
archives, some provisions may need to be made for ensuring
future readability. In systems where long term data
preservation is an absolute necessity, it is possible to imagine a
conversion process taking place at the RMS Content layer
before import (similar to the National Archives of Australias
XENA software) [28].

The third problem is more technical. I have tried to make my
model flexible enough to work with any type of CMS and
RMS, without having to any of these systems. However, some
systems may not support the basic functions mentioned
previously in this chapter. In those cases, this functionality
will need to be added by hand, making implementation more
costly.

These requirements aside, implementing ATLAS should be
relatively straightforward for most corporations. This
simplicity has been achieved by a number of different means.
First of all, ATLAS has an advantage in the fact that its
elements all lie within the control of the organization, making
it possible to customize. It can work with off-the-shelf tools,
which also means that is doesn't require changing or extending
of the systems in use in the organization.

7.Implementation
Cost of Implementation
Implementation in this case means the cost associated with
setting up a system for transferring records and their metadata
from a CMS to a RMS. In reality, there are numerous factors
that influence the cost of implementation, for example
hardware or software cost, time spent on training,
customization efforts, loss of productivity due to unfamiliarity

with new systems etc. However, it is possible to say that all
other things being equal, the cost of purchasing and
implementing new systems is more expensive than using
existing systems, if there are no compelling reasons to do
otherwise.

Provided that the organizations CMS and RMS fulfill the
requirements for working with the three layered model
mentioned previously in this paper, organizations can reap the
benefits of automatic CMS to RMS archiving, without
needing to exchange or modify their existing systems.

Price
The function of the the three layered model is to enable
automatic CMS to RMS archiving. However, some CMS
solutions on the market today offer integrated CMS and RMS
functionality. Such systems (sometimes called Enterprise
Content Management Systems (ECMS), are able to handle
multiple types of content through all stages of the content
lifecycle. In cases where an organization is already using an
ECMS with records management functionality, there is no
need to implement a system such as ATLAS.

However, it should be noted that, because of their size and
complexity, ECMS are generally more expensive than smaller
CMS and RMS solutions. A solution using several CMS
connected to a single RMS via a system like ATLAS may
prove to be cheaper.

Scalability
In a situation with one central ECMS to handle all aspects of
content, including records management, what would happen if
an organization were to find itself in a situation where it
needed to manage a new type of content. For example, if an
organization that had not done so previously would suddenly
need to perform Digital Asset Management. If functionality
managing this type of content were not available in the
ECMS, the organization would need to either expand the
ECMS (if possible and at a cost), or use a dedicated Digital
Asset Management capable CMS. In the latter case, the
organization would still need some way to transfer the new
type of content to a RMS, and would in fact be able to benefit
from a system like ATLAS.

Because of the built-in support for new CMS metadata
schemas, scaling a system using ATLAS by adding an
additional CMS should provide no real difficulties. This is
provided the system is compatible with ATLAS in the first
place. In other words, there would be no other cost to the
organization, other than those associated with implementing
the new CMS.

8. Evaluation
Before performing an evaluation, it is important to remember
that this paper proposes two different things. The three layered
model and ATLAS. In the evaluation below, I am talking
about the three layered model unless specifically otherwise.
The evaluation of ATLAS should be taken as an example of a
way to implement the three layered model in practice.

Use
Regarding evaluation of the use of ATLAS, it should be
mentioned that there are many different procedures for
transferring content and metadata from a CMS to a RMS. I
have chosen to evaluate ATLAS with two different scenarios,
which I think represent the two opposite ends of the scale. One
fully manual and one automated via export-import scripts. In
reality, most organizations will probably use a solution that
lies somewhere in the middle, ie. have some of the steps
automated, while others remain manual.

However, before starting to analyze how ATLAS compares to
other types of submission processes, it is necessary to

establish what records submission procedures are actually in
use in organizations today. Unfortunately it is difficult to find
reliable information on the internet about this area, since it
pertains to internal organizational practices. However, the
basic concept remains unchanged: If the CMS and RMS are
incompatible, the only ways to transfer content is either
manually, or through some sort of plug-in or script.

ATLAS compared to a fully manual records submission
process
Since an automated process for records transfer would be less
costly, there are still reason why an organization would
maintain manual processes. As previously mentioned, one of
the main reasons is system incompatibility. An example in
point is the Royal Danish School of Library and Information
Science. This organization uses Microsoft SharePoint as their
main CMS, yet this system is incompatible with their RMS.
The same problem was to be found at my company, where I
worked as a records manager. The CMS (also SharePoint) was
incompatible with the RMS (a Lotus Notes database).

The above incompatibility forces users to use manual a
process for records transfer approaching the following steps:

1. Create final version of content in the CMS

2. Download content to local folder

3. Log-in to RMS

4. Upload content to RMS

5. Manually add necessary metadata

6. Save content as record

In this case, there are six steps to complete before the record is
saved in the RMS. Furthermore, step 5 can be a very time
consuming task, since all the administrative metadata from the
CMS is lost in the process. Compare this with the ATLAS
process below:

1. Create final version of content in the CMS

It must be be noted that the above single step process depends
on the metadata from the CMS to satisfy all the required RMS
metadata fields. If this is not the case, missing metadata will
have to be added manually.

Comparing ATLAS to a manual submission process, the
number of steps is drastically reduced. When the user has
created the final version of a record, it is automatically
transferred, with metadata, to the organizational RMS.

ATLAS compared to semi-automated systems
Another way in which organizations transfer their files from a
CMS to a RMS is through systems that automate parts of the
transfer process, such as offering “bulk import” functionality
in a RMS. An example of such a system is Oracle Records
Database, which offers the ability of adding an entire file
folder of files to the RMS.

In cases where this kind of functionality is not available in the
system, organizations may have to write their own custom
scripts or plugins to help with automation. An example of this
can be found in a case study published by Information
Management Journal in 2005:

“The bank examination staff was using a software package,
developed in conjunction with several other federal bank
regulators, to create and store examination work papers. The
creation and preservation of complete, accurate, and
trustworthy bank examiner work papers are paramount
because bank ratings depend on examination results. The
records manager asked the IT staff to develop a small set of
computer code so that when a set of examiner work papers
was saved by a bank examiner, a copy would be automatically
sent to a folder controlled by the records manager” [29]

While being a very rudimentary example, it serves as an
example of an organization having to to develop a custom
solution for automating export of records from a CMS.

So, how do ATLAS compare with such semi-automated
processes? First of all, ATLAS covers the whole transfer
process, from CMS to RMS. Secondly, ATLAS works with
more than one CMS. In the bank case study above, the small
set of computer code is designed to work with only one CMS,
and is unlikely to work anywhere else. Thirdly, ATLAS
supports transfer of CMS metadata and metadata conversion.
Many customized solutions do not.

Other criteria for evaluation
There are a number of other areas where ATLAS can be said
to have advantages, namely OWL functionality, crosswalk
reuse and administration. Using OWL for its metadata
crosswalks brings a number of benefits to ATLAS. First of all,
by using OWL, organizations commit to keeping their
metadata schemas in a universal format that has a common
syntax XML/OWL and that machine understandable. This can
be important in cases where organizations are using a large
number of crosswalks, because it makes it easier to
understand, update, and integrate legacy data when the
platform is shared. Because of its semantic nature, using OWL
also provides a common vocabulary of defined terms and the
relationship between these terms. This makes searching the
crosswalks easier, since the location of the terms and their
interrelationship is defined in the ontology.

Finally, OWL also provides benefits to human users, since
they can use OWL ontologies as a reference, for example by
using the defined namespaces to lookup the meaning of
metadata terms, or even visualize the data via visualization
tools such as IsaViz. Using XML/OWL also makes it possible
to parse crosswalks via OWL parsers to check for errors
before upload to ATLAS.

As for crosswalk reuse, the XML/OWL metadata crosswalks
in ATLAS provide an easy way to add a new CMS to ATLAS,
namely templates. Once a template for a crosswalk has been
created, a new crosswalk can be prepared in very little time by
changing the XML tags pertaining to CMS.

Finally, using ATLAS give archivists or administrators a
single interface for administering CMS schema and element
information for all registered CMS. By using the Edit function
in the CMS or Element management screen, archivists can
perform simple management tasks such as adding extra
metadata elements, changing the URL and so on.

8.1 Limitations of the three layered model
There are a number of limitations in three layered model as
well. These have been described earlier in this paper. To
summarize, there are a number of scenarios where a solution
such as ATLAS would be difficult to implement: 1) If the
CMS in question does not support RSS or a similar protocol
for sending transport packages out of the box, this
functionality will have to be added to the system, adding to
the cost. 2) If the CMS uses only a very small set or metadata
to manage content, or if the CMS metadata schema and RMS
metadata schema are very different, a large amount of RMS
metadata may have to be added manually by the archivist
import. 3) If the content or metadata is “locked” in the CMS in
such a way that it cannot easily be exported from the CMS. 4)
If the RMS only supports adding content manually through a
GUI (no support for bulk import).

9. Conclusion
In this paper, I have presented a new model for transferring
records from CMS to an RMS. By using a lightweight three
layered model, I have shown a way to reduce the complexity
of integrating content management and records management

functionality compared to other models of digital archiving
and harvesting of web content. This integration is of benefit to
organizations, since it automates the records submission
process, reducing the cost of users having to transfer content
and metadata manually.

There is of course always a trade off between simplicity and
functionality, and in some cases, the three layered model may
turn out to be too limited. But I believe that the openness of
the three layered model makes it possible to extend the basic
functionality by adding extra functions such as content
conversion. The fact that the three layered model doesn't
require reprogramming of the organizations CMS or RMS,
coupled with the fact that it is not tied to any one software
solution makes it even more generally applicable.

Using the three layered model, I have developed the
Automated Transfer Lightweight Archive System (ATLAS).
ATLAS enables organizations to automatically transfer
content and metadata from one or more CMS to an RMS.
During the transport process, ATLAS performs automatic
metadata conversion through metadata crosswalks. Metadata
from the CMS is converted into a format which can be
imported into the RMS, ensuring reuse of compatible
metadata. By automating this process, the cost of making users
manually enter metadata is greatly reduced.

ATLAS uses RSS 2.0 as its protocol for harvesting CMS
content. Because of the almost universal support for RSS in
current CMS, ATLAS can be used with most CMS out of the
box with little or no need to perform alterations.

Finally, ATLAS offers support for uploading additional
metadata crosswalks in XML/OWL. This upload process can
be performed by archivists via the ATLAS GUI. This solution
is more flexible than doing ad-hoc metadata conversion based
on values hard coded into ATLAS because it makes it easier to
add a new CMS to ATLAS. Using OWL for uploading new
crosswalks can be useful for organizations who wish to store
their data in a universal, machine understandable language,
allowing better search capabilities and easier data integration.

By building ATLAS, I have shown that it was possible to
automatically transfer content and metadata from an off the
shelf CMS to a RMS. The metadata crosswalk functionality in
ATLAS meant that CMS elements that could be be mapped to
RMS elements were translated and imported along with their
respective content. The tested ATLAS solution was shown to
be significantly less costly than a manual export/import
process, and more flexible than a solution based on CMS
specific or ad-hoc export/import scripts.

Finally, because ATLAS is built on open technologies such as
RSS, XML, OWL, XSLT and JSON, it is possible to expand
the current basic functionality by adding support for
functionality such as RSS Trackback and Authentication.

REFERENCES
[1]: Spotlight on Sarbanes-Oxley Rulemaking and Reports,
U.S. Securities and Exchange Comission,
http://www.sec.gov/spotlight/sarbanes-oxley.htm, Accessed
14-01-2008

[2]: Robles, Marcel; Langemo, Mark. The Funamentals of
Records Management, Office Systems, 1999

[3]: Mybrugh, Susan. Knowledge Management and Records
Management: Is There a Difference, RIMR, September 1998

[4]: XML to Work: Advantages of Content Management,
XML.org,
http://www.xml.org/xml/putting_xml_to_work.shtml,
Accessed 14-01-2008

[5]: Consultative Committee for space Data Systems.
Reference Model for an Open Archival Information System
(OAIS), Blue Book, 2002

[6]: Boiko, Bob. Content Management Bible, 2nd Edition,
Wiley Publishing, Inc., Indianapolis, 2005

[7]: Internet Archive, The Internet Archive,
http://www.archive.org/index.php, Accessed 14-01-2008

[8]: Crosswalk: FGDC Content Standards for Digital
Geospatial Metadata to USMARC, Alexandria Digital
Library, http://alexandria.sdc.ucsb.edu/public-documents/,
Accessed 14-01-2008

[9]: Mary S. Woodley. Crosswalks The Path to Universal
Access?, The J. Paul Getty Trust,
http://www.getty.edu/research/conducting_research/standards/
intrometadata/path.html, Accessed 14-01-2008

[10]: WCSTools, Getdate, http://tdc-
www.harvard.edu/software/wcstools/getdate.html, Accessed
14-01-2008

[11]: Boiko, Bob. Content Management Bible, 2nd Edition,
Wiley Publishing, Inc., Indianapolis, 2005

[12]: New Plan Excel Realty Trust Integrates Enterprise
Content Management, Oracle,
http://whitepapers.zdnet.co.uk/0,1000000652,260289614p,
00.htm?dl=1, Accessed 14-01-2008

[13]: Consultative Committee for space Data Systems.
Reference Model for an Open Archival Information System
(OAIS), Blue Book, 2002

[14]: Final Rule: Retention of Records Relevant to Audits and
Reviews, U.S. Securities and Exchange Comission,
http://www.sec.gov/rules/final/33-8180.htm, Accessed
14-01-2008

[15]: Open Archives Initiative Protocol for Metadata
Harvesting, v. 1.1. 2001, Open Archives,
http://www.openarchives.org/OAI_protocol/openarchivesprot
ocol.html, Accessed 14-01-2008

[16]: Lagoze, Carl; Van de Sompel, Herbert. The OAI:
Building a low-barrier interoperability framework,
www.openarchives.org/documents/jcdl2001-oai.pdf, Accessed
14-01-2008

[17]: RSS 2.0 Specification, RSS Advisory Board, 12 August,
2006, http://www.rssboard.org/rss-specification, Accessed
14-01-2008

[18]: Recasting the Concept of Podcasting, TDG Research,
http://news.digitaltrends.com/talkback109.html, Accessed
14-01-2008

[19]: Understanding Blog and Ping, Blog Herald, August 16,
2005, http://www.blogherald.com/2005/08/16/understanding-
blog-and-ping/, Accessed 14-01-2008

[20]: TrackBack Technical Specification, Six Apart:
Developer Documentation,
http://www.atomenabled.org/developers/syndication/,
Accessed 14-01-2008

[21]: CMS metadata elements and guidelines, Monash
University, http://www.lib.monash.edu.au/metadata/cms-
metadata.html, Accessed 14-01-2008

[22]: Public Record Office. Requirements for Electronic
Records Management Systems, Crown, 2002 revision, final
version

[23]: RDF and OWL Recommendations, World Wide Web
Consortium, http://www.w3.org/2004/01/sws-pressrelease,
Accessed 14-01-2008

[24]: RDF Primer - W3C Recommendation 10 February 2004,
World Wide Web Consortium, http://www.w3.org/TR/REC-
rdf-syntax/, Accessed 14-01-2008

[25]: OWL Web Ontology Language Guide, World Wide Web
Consortium, http://www.w3.org/TR/owl-guide/, Accessed
14-01-2008

[26]: XML Path Language (XPath), World Wide Web
Consortium, http://www.w3.org/TR/xpath, Accessed
14-01-2008

[27]: Introducing JSON, JSON, http://www.json.org/,
Accessed 14-01-2008

[28]: Tools for digital preservation, National Archives of
Australia, http://www.naa.gov.au/records-management/secure-
and-store/e-preservation/at-naa/software.aspx, Accessed
14-01-2008

[29]: Electronic records management on a shoestring: Three
case studies, Entrepreneur.com,
http://www.entrepreneur.com/tradejournals/article/127433398.
html, Accessed 14-01-2008

	1. Introduction
	2. Background
	2.1 Problems with existing methods of records transfer
	2.2 Metadata crosswalks and data loss
	2.3 Requirements for a records transfer model

	3. Model for Connecting CMS and RMS
	3.1 Introduction to the three layered model
	3.2 The Three Layered Model explained

	4. Information flow in the three layered model
	4.1 Content Management System
	CMS Layer 1 - Content
	CMS Layer 2 – Metadata
	CMS Layer 3 - Transport

	4.2 Records Management System
	RMS Layer 3 – Transport
	RMS Layer 2 - Metadata
	RMS Layer 1 - Content

	5. Related models
	6. Building the ATLAS system
	6.1 Transport package protocol
	The use of RSS in ATLAS
	Other enhancements
	Support for other protocols

	6.2 Metadata schemas in ATLAS
	Adding new metadata crosswalks
	Creating metadata crosswalks
	What is XML/OWL
	Creating XML/OWL crosswalks for ATLAS
	Importing crosswalks with XSLT and JSON

	6.3 ATLAS Requirements

	These requirements aside, implementing ATLAS should be relatively straightforward for most corporations. This simplicity has been achieved by a number of different means. First of all, ATLAS has an advantage in the fact that its elements all lie within the control of the organization, making it possible to customize. It can work with off-the-shelf tools, which also means that is doesn't require changing or extending of the systems in use in the organization.
	7.Implementation
	Cost of Implementation
	Price
	Scalability
	Because of the built-in support for new CMS metadata schemas, scaling a system using ATLAS by adding an additional CMS should provide no real difficulties. This is provided the system is compatible with ATLAS in the first place. In other words, there would be no other cost to the organization, other than those associated with implementing the new CMS.

	8. Evaluation
	Use
	ATLAS compared to a fully manual records submission process
	ATLAS compared to semi-automated systems
	Other criteria for evaluation
	8.1 Limitations of the three layered model

	9. Conclusion
	REFERENCES

